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Anticommutative Electric and Magnetic Charges,
and the Monopole Question
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The monopole question is treated anew in the light of a recent, strictly covariant,
extended formulation of fermion quantum field theory naturally including also
a pseudoscalar variety of conserved charges. The essential novelty lies in the
resulting quantum property of anticommutivity between scalar and pseudoscalar
charge varieties, which should in particular apply to electric and magnetic charges.
As an immediate outcome, there should no longer be any (Dirac-like) quantization
condition relating these charges and binding the magnetic elementary charge to
have a very great strength. A generalized Lagrangian approach to the monopole
problem is made truly viable, leading to two independent local gauge couplings
which are separately generated by the electric and magnetic elementary charges
and are not allowed to interfere. This would prevent electric and magnetic
monopoles from mutually interacting and would particularly account for the
“absence” of magnetic sources in ordinary electromagnetism. Within such a
framework, an electric charge eigenstate with a nonzero eigenvalue is bound to
have a null magnetic charge expectation value, and the magnetic dipole moment
of an electrically charged point fermion may actually be seen as resulting from
the additional internal presence of a single magnetic charge subjected to a maximal
uncertainty in sign. An easy estimate makes it allowable to assign to this charge
a strength just equal to that of the partner electric charge. Such a conjecture leads
to a “dual” model of a charged point fermion where the “electric” and “magnetic”
roles can well be interchanged with no observable effects. In the associated
formalism, duality symmetry is already included without the need to appeal to
any “missing” electromagnetic phenomenology to be discovered.

1. INTRODUCTION

The question of monopoles has been an intriguing subject of theoretical
investigation for nearly 70 years. Most works concerned with it are essentially
developments of Dirac’s fundamental papers [1]. Two main monopole models
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have emerged during the last 40 years. These are the ’t Hooft–Polyakov
monopole (which corresponds to a soliton solution within a scheme of sponta-
neously broken weak-isospin symmetry) [2–5] and the Wu–Yang monopole
(which relies upon the fiber-bundle theory) [6–8]. Both models are able to
avoid the Dirac “string” on dealing with the motion of an electric charge in
the field produced by a magnetic monopole. Neither of them, however, can
get rid of two basic difficulties arising from Dirac’s theory:

(i) Due to the Dirac quantization condition (in Heaviside–Lorentz units)
qg 5 2pn (n 5 1, 2, . . . ; " 5 c 5 1), the magnetic elementary charge g0

and the electric one q0 should be related, g0 5 2p/q0, in such a way that the
coupling constant g0

2/4p 5 (1/4)(4p/q0
2) is nearly 5000 greater than q0

2/4p!
This, in view of electroweak unification, seems to be a rather embarassing
outcome, as the couplings generated by electric and magnetic elementary
charges should all the more reason be expected to be two mere manifestations
of a single interaction.

(ii) Even though some noteworthy attempts have been made [10, 13],
a strictly orthodox Lagrangian formulation appears to be no longer allowable
when magnetic monopoles are included.

The origin of these two questionable points lies indeed in the conjecture,
seemingly obvious, at first sight, of a mutual interaction for electric and
magnetic monopoles: the whole electromagnetic field that can be felt by one
kind of monopole should generally include the field contribution coming
from the other kind of monopole. Here it will be argued, nevertheless, that
such an interaction cannot be taken for granted at all due to the pseudoscalar
(rather than scalar) behavior to be expected for a single magnetic charge
[11–18]. This can be properly seen within a recent generalized approach to
fermion quantum field theory naturally including also a pseudoscalar variety
of conserved charges [18]. The essential point is that the latter anticommutes
with the ordinary (scalar) charge variety, so that a fermion bearing both
(scalar and pseudoscalar) kinds of conserved charges might display only one
charge variety at a time, with a null expectation value for all charges of the
other kind (see Section 2).

On these grounds, a pure quantum view of the monopole problem can
be developed (see Sections 3 and 4). It is able to give an immediate understand-
ing of the fact that magnetic four-currents locally coexisting with electric
four-currents have never been observed: due to the anticommutivity property
between scalar and pseudoscalar charge varieties, electric-charge eigenstates
are now strictly bound to have a null magnetic-charge expectation value
(unless their electric charge is vanishing). Both points (i) and (ii) can further-
more be overcome by the new approach since a strict Lagrangian formulation
(with no singularity problems) is actually made viable where the electric and
magnetic elementary charges may in principle generate only two separate
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local gauge couplings unable to interfere: an electric (magnetic) monopole
can now couple merely to the four-potential originated by electric (magnetic)
currents. Of course, dealing with a pair of distinct (electric and magnetic)
four-potentials is not really a novelty in the literature [9, 10, 13, 16], but in
the present case they also stand for two independent (vector and axial-vector)
gauge fields. All this fully accounts for the empirical “absence” of magnetic
sources in electromagnetism where electric charges are involved.

In light of this approach, any existing charged point fermion may be
thought of anew (see Section 5): its apparent “magnetic dipole” behavior
would be actually generated by the additional internal presence of just a
single magnetic point charge subjected to a maximal uncertainty in sign.
From an easy estimate, one can further see that the magnetic charge in
question may even be assumed to have the same strength as the partner
electric charge. Such an assumption strictly involves a “dual” model of a
charged point fermion (see Section 6), where the antithetical roles played by
the two coexisting (electric and magnetic) charges can be interchanged (by
a duality transformation) without any observable effects. The associated for-
malism is already so structured as to possess duality symmetry, with no need
to bring in some “missing” electromagnetic phenomenology which is still to
be discovered as a “complement” of the ordinary one. In view of such a
model, one might conclude that if matter is really made up of spin-1/2 point
fermions only, it would be wrong to think of magnetic monopoles as new
objects yet undiscovered.

1. UNIFIED, STRICTLY COVARIANT, FERMION–
ANTIFERMION QUANTUM FIELD FORMALISM, AND
NATURAL APPEARANCE OF A PSEUDOSCALAR
CHARGE VARIETY WITH NO BREAKING OF PARITY
SYMMETRY

In this section as well as in the next one I review some relevant points
of the generalized (strictly covariant) approach to fermion quantum field
theory which has been outlined in refs. 18.

The usual fermion quantum field formalism, based on the Dirac equation
and the “hole” interpretation for negative frequencies, is obviously unable
to provide a one-particle relativistic description: it deals with a Fock space
as the sum of two distinct (and not fully covariant) pure Fock spaces—relevant
to (positive-energy) “particles” and “holes,” respectively—which are mapped
onto each other by charge conjugation, or “particle” i “hole” conjugation.
A fully covariant, one-particle description is made viable using the Stüeckelb-
erg–Feynman improved approach to the negative-energy problem [19]: the
motion of a “hole” can then be reinterpreted as a motion backward in time
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of a negative-energy “particle,” and the composite Fock space can accordingly
be recast as a single Fock space for “particles” only, with energies now
covariantly running over the whole spectrum of positive and negative eigen-
values. Let us denote the latter (fully covariant) Fock space by ^o. In line
with this, the Stüeckelberg–Feynman approach also enables one to think of
a covariant charge conjugation which may globally interchange either a
positive- or negative-energy fermion and either a positive- or negative-energy
antifermion: in principle, this is not just the same as “particle” i “hole”
conjugation (which is a noncovariant operation interchanging positive-energy
fermions and antifermions). There is, however, one apparent difficulty. The
single Fock space ^o can equally pertain (covariantly) to either identical
fermions or identical antifermions: according to the Stüeckelberg–Feynman
view, a complete set of ^o kets (bras) for fermions amounts to a complete
set of ^o bras (kets) for antifermions. Such a difficulty can be overcome
by carefully reexamining the Stüeckelberg–Feynman approach in classical
relativistic terms. Let 2pm 5 m(2um) (m 5 0, 1, 2, 3; metric: 1 2 22) be
the four-momentum of a negative-energy particle of proper (i.e., covariant)
mass m (. 0) and four-velocity 2um 5 2dxm/ds (2dx0 , 0). Since the
equivalent positive-energy antiparticle, with four-momentum pm, is covering
just the same world-line in the opposite direction, ds→ 2ds, the “slope”
2um of that world-line cannot be affected by the reinterpretative procedure:
one has (2dxm)/ds 5 dxm/(2ds). Strictly speaking, therefore, the procedure
is such that 2pm → pm ⇒ m→ 2m. On these theoretical grounds, one
may state that a Dirac fermion and a Dirac antifermion can covariantly be
distinguished by the (opposite) sign of their proper mass; so that the covariant
charge conjugation we are looking for is to be identified with proper-mass
conjugation [20–23]. As ^o can equally refer to either fermions or antifermi-
ons (with both positive and negative energies), we must expect it to be left
invariant by proper-mass conjugation: this corresponds to the fact that the
proper-mass sign in the Dirac equation is irrelevant. To get really a nontrivial
definition of a covariant charge conjugation, one should therefore double ^o

by giving it some “label” that may specifically tell which of the two proper-
mass signs is being considered. For this purpose it is appropriate to introduce
two (orthogonal) unit internal state vectors . f & and . f & which are eigenvectors
of a (covariant) one-particle proper-mass operator M with eigenvalues 1m
and 2m:

M. f & 5 1m. f &, M. f & 5 2m. f & (2.1)

Let 6in be the two-dimensional internal space that is spanned by such eigen-
vectors. A “dressed” generalized Fock space ^ can then be built from the
“bare” one ^o such that
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^ [ ^o J 6in (2.2)

In this way, the complete set of ^o kets (bras) may undergo a doubling
into a “Dirac fermionic” set covariantly labeled by . f & (^f |) plus a “Dirac
antifermionic” one covariantly labeled by . f & (^ f .) (with an energy range,
in either case, still including both positive and negative eigenvalues); more-
over, the covariant charge conjugation may be represented by a unitary and
Hermitian operator C essentially acting in 6in and anticommuting with M:

C. f & 5 . f &, C. f & 5 . f & (C21 5 C† 5 C ) (2.3)

What such a doubling involves can be fully understood on coming back to
the “particle–hole” language: it provides two alternative (equivalent) Dirac
pictures where one is unambiguously choosing either “particle” 5 fermion
and “hole” 5 antifermion or “particle” 5 antifermion and “hole” 5 fermion,
respectively. These are two proper-mass conjugated descriptions, to be associ-
ated with two opposite-proper-mass Dirac free-field equations like

igm­mcf 5 1mcf , igm­mcf 5 2mcf (2.4)

(" 5 c 5 1; g0† 5 g0, gk† 5 2gk, k 5 1, 2, 3) where cf should consistently
stand for the proper-mass conjugated counterpart of cf . Both field equations
(2.4) are equally allowable within ^o, and the dressed Fock space (2.2) should
go along with a double-structured, dressed field operator of the type

C(x) 5 cf (x)^ f . 1 cf (x)^ f . (2.5)

(x [ xm). This is a Lorentz four-spinor, also looking like an 6in (bra) vector
of “Dirac components” cf (x) and cf (x) (whose orthogonality in 6in is just
ensured by their being two proper-mass eigenfields with different eigenval-
ues). The field component cf (x)^ f . can covariantly annihilate (either positive-
or negative-energy) Dirac fermions, and the same holds for cf (x)^ f . as regards
(either positive- or negative-energy) Dirac antifermions. According to (2.3),
the C-conjugate field operator reads

C(C)(x) [ C(x)C 5 cf (x)^ f . 1 cf (x)^ f . (2.6)

and a glance at (2.6) shows that applying C may equivalently be seen as putting

C: cf (x) i cf (x) (2.7)

Hence it follows that cf (x) should be covariantly obtained from cf (x) (up to
a phase factor) by applying proper-mass reversal to the Dirac equation:

cf (x) 5 g5cf (x), cf (x) 5 2cf (x)g5 (2.8)

(c 5 c†g0; g5 [ ig0g1g2g3). In line with (2.8) (and with the fact that C is
defined in 6in) the standard Fourier expansions of cf (x) and cf (x) must
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contain identical “particle”-annihilation operators of the type a(p, s) as well
as identical “hole”-creation operators of the type ah†(p, s) (s being the
helicity variable). This is admissible because cf (x) and cf (x) belong to alterna-
tive (proper-mass conjugated) Dirac pictures where one has either “particle”
5 fermion (and “hole” 5 antifermion) or “particle” 5 antifermion (and
“hole” 5 fermion), each single picture being able (independently of the other)
to account for the creation or annihilation of a “particle”–“hole” pair. Here
cf (x) has nothing to do with the customary “hole” field which is (noncovari-
antly) obtained by applying “particle” i “hole” conjugation (i.e., a → ah,
ah† → a† ): the latter can still be encountered, too, but only within either
picture, as a result of normal ordering. By exploiting Eqs. (2.8) and introducing
the adjoint field operator

C(x) 5 . f &cf (x) 1 . f &cf (x) (2.9)

one can compactly write

C(C)(x) 5 g5C(x), C(C)(x) 5 2 C(x)g5 (2.10)

This strictly defines the effective action of chirality g5 as covariant charge
conjugation.

Another relevant 6in basis can be obtained from (. f &, . f &) by performing
the rotation

. f & 5 221/2(. f ch & 1 . f ch&) (2.11)

. f & 5 221/2(2. f ch& 1 . f ch&)

The operator C is made diagonal in such a basis:

C. f ch& 5 2. f ch&, C. f ch& 5 . f ch& (2.12)

Thus a further (unitary and Hermitian) operator, say Pin, can be introduced
in 6in, which in turn has the property of interchanging . f ch& and . f ch&,

Pin. f ch& 5 . f ch&, Pin. f ch& 5 . f ch& (P21
in 5 P†

in 5 Pin) (2.13)

and being diagonal in the basis (. f &, . f &). More specifically, since

Pin. f & 5 . f &, Pin. f & 5 2. f & (2.14)

one has that Pin may be regarded (apart from a phase constant h 5 61) as
standing for an “intrinsic parity” covariant operator: it should be identified
with that factor of the parity operator P ([ Pex Pin 5 Pin Pex) which properly
acts in 6in (the other factor, Pex, properly acting in ^o). In the new 6in basis,
the field C(x) reads

C(x) 5 xf (x)^ f ch. 1 xf (x)^ f ch. (2.15)
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where

xf (x) [ 221/2(1 2 g5)cf (x), x f(x) [ 221/2(1 1 g5)cf (x) (2.16)

and

cf 5 221/2(x f 1 x f ), cf 5 221/2(2x f 1 x f) (2.17)

In this way, one can naturally obtain the two (massive) chiral fields x f and
x f, with opposite chiralities, on the same footing as the two Dirac fields cf

and cf. Such an outcome takes on a very special meaning in the zero-mass
limiting case: for .m. 5 0, in line with experience, the strictly covariant
quantum approach here considered leads to an automatic prediction of an
only left-handed chiral fermion and an only right-handed chiral antifermion,
which are now to be reinterpreted as two C eigenstates being nothing but
ordinary mirror images of each other. This should be connected with the
more general fact that, as is discussed in refs. 8, the new field formalism in
hand makes legitimate a parity-symmetric reinterpretation of the “maximal
parity violation” effect [24–31] peculiar to the weak-isospin fermionic
current.

A full understanding of all this can be gained by introducing two one-
particle “charge” operators Q and Qch, the former being diagonal (with oppo-
site nonzero eigenvalues) in the “Dirac” 6in basis (. f &, . f &) and the latter
being the same in the “chiral” 6in basis (. fch &, . f ch&): they are such that

CQ 5 2QC, PinQ 5 QPin (2.18)

and

PinQch 5 2QchPin, CQch 5 QchC (2.19)

Thus Q behaves like a scalar charge (reversed by C ) and Qch like a pseudosca-
lar charge (reversed by Pin); and one has that C and Pin properly stand for
scalar- and pseudoscalar-charge conjugation operators, respectively. Hence,
in view of Eqs. (2.3) and (2.13), it follows that the internal states (. f &, . f &)
look like pure scalar-charge conjugated eigenstates and the internal states
(. f ch&, . f ch&) like pure pseudoscalar-charge conjugated eigenstates. This cor-
responds to the fact that Q and Qch are anticommuting operators,

Q Qch 1 QchQ 5 0 (2.20)

though their squares clearly satisfy the commutation relations

[Q2, Qch] 5 [(Qch)2, Q] 5 0 (2.21)

Each of the two charges Q and Qch, if singly applied (from the right) to the
field C(x), is able to superselect that internal representation of C(x), either
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(2.5) or (2.15), diagonalizing it. If such superselections are to be ascribed a
physical meaning, the two bases (. f &, . f &) and (. f ch&, . f ch&) should also give
two allowable pairs of superselected internal states for the fermion and the
antifermion. The most general situation is when the same fermion–antifermion
pair should be described by either the Dirac or the chiral 6in basis according
to whether a charge Q or Qch is involved. In such a situation, the maximal
incompatibility between the superselections induced by Q and Qch turns out
to play a crucial role: one alternately has

^ f |Qch. f & 5 ^ f .Qch. f & 5 0 (2.22)

when (. f &, . f &) is superselected, and

^ f ch.Q. f ch& 5 ^ f ch.Q. f ch& 5 0 (2.23)

when (. f ch&, . f ch&) is superselected [13]. Hence it may further be concluded
that the “true” fermion → antifermion covariant conjugation should generally
be identified with CPin, even though CPin is just reducible to C when acting
on . f & and to Pin when acting on . f ch&:

CPin. f & 5 C. f &, CPin. f ch& 5 Pin. f ch& (2.24)

(CPin 5 2PinC ). In the former case the fermion (antifermion) consistently
behaves like a pure scalar-charge object, whereas in the latter case it behaves
like a pure pseudoscalar-charge object; in both individual cases (and not only
in the former) P mirror symmetry may be strictly respected [32]; as particu-
larly regards the latter case, the state of a fermion (antifermion) at rest
appears to be no longer a P eigenstate, and P also plays an internal role as
“(pseudoscalar)-charge conjugation” (in place of C ).

3. CHIRAL-GAUGE GLOBAL SYMMETRY AND
PSEUDOSCALAR-CHARGE CONSERVATION

Whether in the “Dirac” internal representation (2.5) or in the “chiral”
one (2.15), the free fermion–antifermion field C(x) covariantly obeys the
generalized Dirac equation

igm­mC(x) 5 C(x)M (3.1)

M is the one-particle proper-mass operator defined by (2.1). A comparison
of (2.1) with (2.14) enables one to recast this equation in the more conven-
ient form

igm­mC(x) 5 .m.C(Pin)(x) (3.2)

where Pin is the “intrinsic parity” operator defined by (2.14) and
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C(Pin)(x) [ C(x)Pin 5 cf (x)^ f . 2 cf (x)^ f . (3.3)

The field equation (3.2) (as well as its Pin-conjugated counterpart) is derivable
from the real free Lagrangian density

+(C, C(Pin), C, C(Pin), . . . ; .m.) 5 1–4 [i(Cgm­mC 1 C(Pin)gm­mC(Pin)) 1 H.c.]

2 1–2 .m.(CC(Pin) 1 C(Pin)C) (3.4)

where C(Pin) 5 Pin C. Regardless of the internal representation of the fields
(which may even be the chiral one), this Lagrangian density is both manifestly
Pin-invariant,

+(Pin) [ Pin+P†
in 5 + (3.5)

and P-invariant, with P acting as usual:

P: ­m → ­m, gm → g0gmg0 (3.6)

It is not, however, manifestly C-invariant, C being the covariant operator
that acts as scalar-charge conjugation according to (2.3): for such a purpose,
one should rather build an overall Lagrangian density like 1–2 [+ 1 +(C)], with
+(C) [ C+C†. Yet, we may always assume that +(C) 5 + by imposing ab
initio the g-matrix representation for C:

CC 5 g5C, CC 5 2Cg5;
(3.7)

C(Pin) C 5 2g5C(Pin), CC(Pin) 5 C(Pin)g5

In (3.7), the p phase difference on passing from CC (CC) to
C(Pin)C (CC(Pin)) is due to the fact that CPin 5 2PinC; it is by virtue of this
phase difference that even the mass term in + may be left unvaried by + →
C+C †. On the other hand, as can be concluded from (2.12), (2.14), (2.18),
and (2.19), the scalar- and pseudoscalar-charge one-particle operators Q and
Qch acting in the fermion–antifermion internal space 6in may be formally
written as

Q 5 qPin, Qch 5 2qchC (3.8)

where q and qch denote the given Q and Qch (nonzero) eigenvalues associated
with the fermion internal states . f & and . f ch&, respectively. By use of (3.5),
(3.7), and (3.8), it is then easy to verify that + has indeed the peculiar
feature of being left invariant by two individual varieties of global U(1)
transformations: the former is

+ → exp[2iaQ]+ exp[iaQ] (3.9)
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and the latter is

+ → exp[2ibQch]+ exp[ibQch] (3.10)

(" 5 c 5 1), where a and b are two, scalar and pseudoscalar, (constant)
real phases. As particularly regards transformation (3.10), it amounts to the
chiral gauge

C → exp[2ibqchg5]C, C → C exp[ibqchg5]
(3.11)

C(Pin) → exp[ibqchg5]C(Pin), C(Pin) →C(Pin] exp[2ibqchg5]

The conserved free currents that can independently be obtained from +
invariance under either (3.9) or (3.10) are

((Q) 5 QJ 5 JQ, ((Qch) 5 QchJ 5 JQch (3.12)

where

J [ J m 5 1–2 [CgmC 1 C(Pin)gmC(Pin)] (­mJ m 5 0) (3.13)

With the help of (3.7) and (3.8), it is easy to check that ((Qch) coincides with
the conserved chiral current

J (g5) [ 1–2 qch[2Cgmg5C 1 C(Pin)gmg5C(Pin)] (3.14)

which can be derived from + invariance under (3.11). Owing to (2.18) and
(2.19), currents (3.12) are consistently such that

C((Q) 5 2((Q)C, Pin ((Qch) 5 2((Qch)Pin
(3.15)

Pin((Q) 5 ((Q)Pin , C((Qch) 5 ((Qch)C

(note that J commutes with both Pin and C ). As an improvement over the
ordinary quantum field formalism, one thus may strictly deal with the conser-
vation of both a scalar and a pseudoscalar variety of charges, which is an
essential preliminary outcome for a quantum description of monopoles. The
two current operators (3.12) act in the generalized Fock space (2.2) and, due
to (2.20), anticommute. The “bare” current operator J, common to them both,
is properly acting in ^o and only trivially acting in 6in. This can be seen,
e.g., if use is made of the closure relation . f &^ f . 1 . f &^ f . 5 1 (where 1
simply denotes the identity operator in 6in): with the help of it, one can
recast J m in the reduced form

J m 5 cf gmcf 5 cf gmcf (3.16)

where cf (cf) is the proper-mass conjugated counterpart of cf (cf) according
to (2.8). As for the scalar-charge current ((Q), one has
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((Q) [ ((Q)m 5 qJ m(3f 2 3f) (3.17)

with

3f [ . f &^ f ., 3f [ . f &^ f . (3.18)

(q being the Q eigenvalue relevant to . f &). This shows that ((Q), strictly
speaking, is a double-structured current, which (in Dirac’s language) provides
for both equivalent cases when one is choosing either “particle” 5 fermion
(and “hole” 5 antifermion) or “particle” 5 antifermion (and “hole” 5 fer-
mion): the former case is selected by 3f and the latter by 3f. If, for example,
we pick up the mere “fermionic” covariant current term qJ3f and apply
normal ordering to J, we are already led to a complete “particle 1 hole”
current like

q(:J:)3f 5 1–2 q[J 2 J (h)]3f (3.19)

where, as usual, J (h) is obtained from J by the annihilation- and creation-
operator substitutions a → ah, ah† → a†. Similar remarks apply to the pseudo-
scalar-charge current ((Qch), the only difference being that the “fermionic”
and “antifermionic” covariant projection operators are therein . f ch&^ f ch. and
. f ch&^ f ch., respectively.

4. TWO SINGLE—“ELECTRIC” AND “MAGNETIC”—LOCAL
GAUGE COUPLINGS, WITH NO POSSIBILITY OF
INTERFERENCE

What has just been generally said for scalar and pseudoscalar conserved
charges can particularly apply to electric and magnetic charges. Let Q 5 Qe

and Qch 5 Qm be the respective one-particle charge operators that should
primarily represent them in the fermion–antifermion internal space 6in. These,
in view of (2.20), are two anticommuting operators, subject to conditions
(2.18) and (2.19). The same holds for their conserved free currents ((Q) 5
(e and ((Qch) 5 (m, which are built from the “bare” current operator (3.13)
according to the formulas

(e 5 QeJ 5 JQe, (m 5 QmJ 5 JQm (4.1)

and obey the anticommutation rule

(e(m 1 (m(e 5 0 (4.2)

besides fulfilling the requirements (3.15). As a consequence of (2.22) and
(2.23), we further have

^ f .(m. f & 5 ^ f .(m. f & 5 0 (4.3)

as well as
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^ f ch.(e. f ch& 5 ^ f ch](e. f ch& 5 0 (4.4)

where the two 6in bases (. f &, . f &) and (. f ch&, . f ch&) are those diagonalizing
Qe and Qm, respectively.

Electric and magnetic four-currents would thus be prevented at the
quantum level from locally coexisting and making up a true unified electro-
magnetic four-current: we might at most speak of two separate four-currents,
each one generating its own electromagnetic field. This would in particular
account for the “absence” of magnetic sources in the customary Maxwell field
equations and for the corresponding existence of a seemingly “incomplete”
electromagnetic phenomenology.

According to the quantum field formalism seen in the previous section,
the individual laws of electric and magnetic charge conservation should be
also associated with two distinct global gauge symmetries, which are those
under the single varieties of U(1) transformations (3.9) and (3.10), with
generators Q 5 Qe and Qch 5 Qm. As far as magnetic charge conservation
is concerned, the related gauge symmetry would be actually equivalent to
invariance under a chiral gauge like (3.11), with qch denoting the strength
of a fermionic elementary monopole. Either of these gauge symmetries is
individually allowed to undergo a local extension. So, on substituting a 5
a(x) (x [ xm) in (3.9), invariance can obviously be restored by adding to the
free Lagrangian density (3.4) a minimal coupling term of the type

+e 5 2(e A [ 2(e
mAm (4.5)

where Am is the ordinary photon gauge field, subject to the complementary
gauge transformation

Am → Am 2 ­ma(x) (4.6)

Similarly, if b 5 b(x) is substituted in (3.10), then invariance can be restored
by adding, as a counterpart of (4.5), a minimal coupling term of the type

+m 5 2(m B [ 2(m
mBm (4.7)

where Bm is a further (massless) gauge field, subject to the complementary
gauge transformation

Bm → Bm 2 ­mb(x) (4.8)

Of course, as (e and (m behave like a vector and an axial-vector in space-
time, so must respectively do the fields A and B to ensure Lorentz invariance
of (4.5) and (4.7).

A scheme with two distinct electromagnetic four-potentials is not a new
one in the literature [9,10,13,16]. The novelty is that they also enter into a
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pair of independent local gauge couplings whose interference is strictly pre-
vented by the constraints (4.3) and (4.4). We should then be actually faced
with two, quite disjoined varieties of electromagnetism, which may, however,
be said to be reciprocally “dual” in the sense that they can be transformed
into each other by the duality rotation

(e → (m, (m → 2(e; A → B, B → 2A (4.9)

These varieties should clearly include the two independent (and dual) sets
of Maxwell equations

­m Fe
mn 5 2(e

n, ­m F̃e
mn 5 0; ­m Fm

mn 5 2(m
n, ­m F̃m

mn 5 0

(4.10)

where

Fe
mn 5 ­mAn 2 ­nAm, Fm

mn 5 ­mBn 2 ­nBm (4.11)

and

F̃e
mn 5 1–2 emnrs Fers, F̃m

mn 5 2 1–2 emnrs Fmrs (4.12)

(emnrs being the completely antisymmetric unit tensor of fourth rank with
e0123 5 1). Under (4.9), one in particular obtains

Fe
mn → Fm

mn, Fm
mn → 2 Fe

mn;
(4.13)

F̃e
mn → 2 F̃m

mn, F̃m
mn → F̃e

mn

Two such separate sets of Maxwell equations can be merged to give the
symmetric set of field equations

­m Fmn 5 2(e
n, ­m F̃mn 5 2(m

n (4.14)

where F mn and F̃ mn are formally defined as

Fmn 5 Fe
mn 1 F̃m

mn, F̃ mn 5 F̃e
mn 1 Fm

mn (4.15)

and F̃ mn 5 1–2 emnrs Frs. As can be easily checked, transformations (4.13)
actually correspond to the overall rotation

Fmn → F̃ mn, F̃ mn → 2 Fmn (4.16)

so that the equation set (4.14) is left unchanged by (4.9). Thanks to the
anticommutivity quantum property of the electric and magnetic currents in
(4.14), a description invariant under (4.9) may thus be attained which is also
free from singularity problems.
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5. A MAGNETIC ELEMENTARY CHARGE “DUAL” TO THE
ELECTRIC ONE

In the foregoing, no particular link like the Dirac quantization condition
has emerged for electric and magnetic charge eigenvalues. This is closely
related to the anticommutivity property of the corresponding one-particle
charge operators Qe and Qm, which should indeed prevent any mutual interac-
tion of electric and magnetic charge eigenstates: two separate local gauge
couplings unable to interfere can but be generated by Qe and Qm. Thus, one
might even argue that building the unified field equations (4.14) from the
two dual sets of Maxwell equations (4.10) is just a formal matter devoid of
any clear physical motivation.

Despite that, a true (and very intimate) connection between the couplings
(4.5) and (4.7) may all the same be conjectured with the help of Dirac’s
fermion theory. One should only allow for the fact that an electrically charged
Dirac spin-1/2 fermion naturally carries also a magnetic dipole moment, and
so it cannot trivially stand for an eigenstate of magnetic charge with a null
eigenvalue. As is well known, such a dipole moment is directly related to
the magnitude, say .e., of the electric charge carried by the fermion: it amounts
to that of two (opposite) magnetic point charges of magnitude .e./2 placed
at a relative distance equal to the effective fermionic Compton wavelength
(resulting from radiative corrections). If we want to interpret this outcome
according to the new quantum views above, we have first to consider that,
in line with (2.22), an electric charge eigenstate such as the one representing
a charged Dirac fermion might only exhibit a vanishing expectation value
of magnetic charge. Confining ourselves to charged leptons, we may put
. f & 5 .2e& in (2.22), where .2e& is an eigenstate of the electric charge one-
particle operator Qe with eigenvalue 2e. As the trivial case of a null magnetic
charge eigenvalue associated with .2e& seems to be excluded by the presence
of the magnetic dipole moment, the only possibility left is to write [13]

.2e& 5 221/2(.g& 1 .2g&), ^2e.Qm.2e& 5 0 (5.1)

where .g& and .2g& are eigenstates of the one-particle magnetic charge opera-
tor Qm with eigenvalues g and 2g. A Dirac charged lepton may thus be
unconventionally viewed as also bearing a single magnetic point charge of
squared magnitude g2 subjected to a maximal uncertainty in sign. Moreover,
since the internal state .2e& is a parity eigenstate, it is evident that the two
(equally probable) signs of this magnetic charge should also correspond to
two alternate locations of it which are spatially inverted images of each
other. These (equally probable) locations of the magnetic charge would fall
within the minimum range of localization given by the effective Compton
wavelength of the lepton; they would only contribute alternately to the dipole
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moment, and two such alternate contributions would further be equivalent.
So, after all, the single magnetic charge being conjectured should always
yield (regardless of sign and corresponding location) a dipole moment which
can be evaluated in magnitude as the product of .g. by half the Compton
wavelength involved. This enables one to set

g2 5 e2 (5.2)

and state that the magnetic dipole moment of a charged lepton, seemingly
due to an indivisible pair of opposite poles of magnitude .e./2, actually results
from the internal presence of one magnetic point charge of absolute strength
.e. which is bound to exhibit a maximal uncertainty in sign. The idea of such
a charge “dual” to the electric one clearly comes up to the natural expectation
for a single electromagnetic coupling constant [33]; it also gives a sound
physical motivation for a unified scheme based on the symmetric field equa-
tions (4.14).

6. CONJECTURE OF “DUALITY EQUIVALENCE”

The basic change brought in by the present approach to dealing with
the monopole problem is that an electric and a magnetic point charge are
now to be represented as two (scalar and pseudoscalar) one-particle quantum
operators like Qe and Qm. These are anticommuting charge operators, such
that, for a Qe eigenstate with eigenvalue qe Þ 0, one has

^Qe& 5 qe Þ 0 ⇒ ^Qm& 5 0 (6.1)

According to (6.1), a particle that is revealing itself as an electric charge
eigenstate with a nonzero eigenvalue cannot simultaneously look like a mag-
netic charge eigenstate with a nonzero eigenvalue: it is strictly bound to
display a null expectation value of magnetic charge. Within the unified
fermion–antifermion quantum field formalism used here, the two charges Qe

and Qm are not linked by any Dirac-like quantization condition; they may
only generate quite distinct local gauge couplings, which can be formally
merged into an “overall” coupling given by the whole term

+em 5 +e 1 +m 5 2(QeJmAm 1 QmJmBm) (6.2)

In (6.2), Am and Bm are two independent (massless) gauge fields (behaving as
a vector and an axial-vector, respectively) and Jm is the fermion–antifermion
current operator (3.13). Due to the anticommutivity property of Qe and Qm,
the coupling (6.2) may at most express either a pure electric or a pure
magnetic monopole interaction at a time; and it can be reduced to the mere
coupling to the ordinary electromagnetic gauge field Am by taking the Qe and
Qm expectation values in line with (6.1).
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As seen in the previous section, Dirac’s fermion theory (supported by
experience) makes it legitimate to set, for charged leptons,

^Qm
2& 5 ^Qe

2& 5 e2 (6.3)

Condition (6.1) applied to a charged lepton reads

^Qe& 5 2e ⇒ ^Qm& 5 0 (6.4)

So, if the lepton were alternatively allowed to manifest itself as a magnetic
charge eigenstate, we might quite symmetrically write, in view of (6.3),

^Qm& 5 2e ⇒ ^Qe& 5 0 (6.5)

On the other hand, strictly speaking, it is just a matter of definition which
of the two charges Qe and Qm in (6.2) is the scalar or pseudoscalar one and
which of the associated gauge fields Am and Bm is accordingly the vector or
axial-vector one: what only matters, in either case, is that Qe and Qm (taken
altogether) transform differently under parity [14] due to their being two
anticommuting charges. Hence, the supposed alternative behavior of a charged
lepton as a magnetic monopole of strength 2e should indeed turn out to be
indistinguishable from its ordinary behavior as an electric monopole. The
strict assumption (6.3) therefore involves a “dual” model of a charged lepton
such that the it may be thought of like either an electric monopole, endowed
with a magnetic dipole moment in line with (6.4). or a magnetic monopole,
endowed with an electric dipole moment in line with (6.5). Such a maximum
degree of symmetry, which we may call “duality equivalence,” is to be
properly expressed by use of our unified fermion–antifermion quantum field
formalism (see Section 2): it implies that the “Dirac” internal state basis (. f &,
. f &) diagonalizing Qe and the “chiral” one (. f ch&, . f ch&) diagonalizing Qm can
both equivalently represent the same charged lepton and related antilepton.
Parity symmetry, in either picture, is fully respected, even though in a diametri-
cally opposed way: as particularly regards the latter picture, the two (fermion
and antifermion) Qm eigenstates . f ch& and . f ch&, instead of being parity eigen-
states, are on the contrary interchanged by parity [32]. In this connection, it
should be emphasized that the electric dipole moment associated with the
magnetic monopole would involve no actual breaking of either parity or time-
reversal symmetry, as the two internal states . f ch& and . f ch& are not required
at all to be individually symmetric under parity.

The conjecture of duality equivalence, marked (in the lepton case) by the
universal (fine structure) coupling constant a, leads to a great simplification of
the monopole problem: on one hand, we are strictly faced with a completely
symmetric set of Maxwell equations like (4.14), but, on the other hand, no
new electromagnetic phenomenology is to be expected as a “complement”
of the one to which we are accustomed. In such a framework of maximal
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symmetry, it is just the quantum property of anticommutivity between electric
and magnetic charges that accounts for a seemingly “incomplete”, well-
established phenomenology: as a consequence, the single “electric” and “mag-
netic” fermionic monopoles may be said to be “complementary” to each
other only in the sense that they provide two equivalent alternative images
of one and the same “electromagnetic” monopole. Of course, this pure quan-
tum view is indissolubly connected with the strict physical condition (6.3);
so it has nothing to do [16] with the well-known classical formal arguments
against the magnetic monopole conjecture [34–36] (which apply only to
charges treated as mere c-numbers).
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